octopus elegance

The elusive octopus genome has finally been untangled, which should allow scientists to discover answers to long-mysterious questions about the animal's alienlike physiology: How does it camouflage itself so expertly? How does it control—and regenerate—those eight flexible armsand thousands of suckers? And, most vexing: How did a relative of the snail get to be so incredibly smart—able to learn quickly, solve puzzles and even use tools?  https://www.scientificamerican.com/article/octopus-genome-reveals-secrets-to-complex-intelligence/

The findings, published today in Nature, reveal a vast, unexplored landscape full of novel genes, unlikely rearrangements—and some evolutionary solutions that look remarkably similar to those found in humans. (Scientific American is part of Nature Publishing Group.) Courtesy Of Scientific American

With the largest-known genome in the invertebrate world—similar in size to that of a house cat (2.7 billion base pairs) and with more genes (33,000) than humans (20,000 to 25,000)—the octopus sequence has long been known to be large and confusing. Even without a genetic map, these animals and their cephalopod cousins (squids, cuttlefishes and nautiluses) have been common subjects for neurobiology and pharmacology research. But a sequence for this group of mollusks has been "sorely needed," says Annie Lindgren, a cephalopod researcher at Portland State University who was not involved in the new research. "Think about trying to assemble a puzzle, picture side down," she says of octopus research to date. "A genome gives us a picture to work with."

Among the biggest surprises contained within the genome—eliciting exclamation point–ridden e-mails from cephalopod researchers—is that octopuses possess a large group of familiar genes that are involved in developing a complex neural network and have been found to be enriched in other animals, such as mammals, with substantial processing power. Known as protocadherin genes, they "were previously thought to be expanded only in vertebrates," says Clifton Ragsdale, an associate professor of neurobiology at the University of Chicago and a co-author of the new paper. Such genes join the list of independently evolved features we share with octopuses—including camera-type eyes (with a lens, iris and retina), closed circulatory systems and large brains.

Having followed such a vastly different evolutionary path to intelligence, however, the octopus nervous system is an especially rich subject for study. "For neurobiologists, it's intriguing to understand how a completely distinct group has developed big, complex brains," says Joshua Rosenthalof the University of Puerto Rico's Institute of Neurobiology. "Now with this paper, we can better understand the molecular underpinnings."

Part of octopuses' sophisticated wiring system—which extends beyond the brain and is largely distributed throughout the body—controls their blink-of-an-eye camouflage. Researchers have been unsure how octopuses orchestrate their chromatophores, the pigment-filled sacs that expand and contract in milliseconds to alter their overall color and patterning. But with the sequenced genome in hand, scientists can now learn more about how this flashy system works—an enticing insight for neuroscientists and engineers alike.

Also contained in the octopus genome (represented by the California two-spot octopus, Octopus bimaculoides) are numerous previously unknown genes—including novel ones that help the octopus "taste" with its suckers. Researchers can also now peer deeper into the past of this rarely fossilized animal's evolutionary history—even beyond their divergence with squid some 270 million years ago. In all of that time octopuses have become adept at tweaking their own genetic codes (known as RNA editing, which occurs in humans and other animals but at an extreme rate in octopuses), helping them keep nerves firing on cue at extreme temperatures. The new genetic analysis also found genes that can move around on the genome (known as transposons), which might play a role in boosting learning and memory.

IntelliReefs_Oceanite_Primary_Horizontal
  • YouTube Social  Icon
  • LinkedIn Social Icon
  • Facebook Social Icon
  • Instagram Social Icon
  • Twitter Basic Square
Reef Life Restoration | Reefbuilder | Coral Reef Preservation   coral reef preservation, artificial coral reefs, coral reef rehabilitation, coral reef restoration projects, green ocean, reefbuilder, smartmaterials, nanomaterials,  sustainability,   coral reef restoration methods, planting coral reefs, artificial reef design, artificial coral reef inserts, artificial coral reefs,